skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aydemir, Umut"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Engineering the thermal properties in solids is important for both fundamental physics ( e.g. electric and phonon transport) and device applications ( e.g. thermal insulating coating, thermoelectrics). In this paper, we report low thermal transport properties of four selenide compounds (BaAg 2 SnSe 4 , BaCu 2 GeSe 4 , BaCu 2 SnSe 4 and SrCu 2 GeSe 4 ) with experimentally-measured thermal conductivity as low as 0.31 ± 0.03 W m −1 K −1 at 673 K for BaAg 2 SnSe 4 . Density functional theory calculations predict κ < 0.3 W m −1 K −1 for BaAg 2 SnSe 4 due to scattering from weakly-bonded Ag–Ag dimers. Defect calculations suggest that achieving high hole doping levels in these materials could be challenging due to monovalent ( e.g. , Ag) interstitials acting as hole killers, resulting in overall low electrical conductivity in these compounds. 
    more » « less